Australian Stainless Blog

Guidelines for painting stainless steel

Guidelines for painting stainless steel
When considering painting stainless steel, the initial question arises: why paint it in the first place?

If the design choice is simply about colour or aesthetic purposes and the product form has a smooth surface (i.e. sheet or round products), using factory-supplied coloured stock attached with fasteners might be the preferable option. This construction method is commonly used for non-contact areas such as walls or facades, as exemplified in ASSDA FAQ 12: Coloured and patterned stainless steel.

Similarly, in new constructions, there are often reflectance limits to consider. While highly polished stainless steels offer extreme reflectivity, embossed surfaces, like the

The global life cycle of stainless steel

The global life cycle of stainless steel
Minimising mining (primary production) and maximising recycling (secondary production) are core principles of sustainable resource management. Consequently, there is an increasing interest in quantifying the material life cycle of stainless steel and its efficiencies from production to fabrication, manufacturing, use, recycling and, in some cases, disposal.

In 2006, Team Stainless and Yale University started the first project to quantify stainless steel stocks and flow cycles. In 2022, The Karlsruhe Institute of Technology made a more detailed analysis of 2019 data covering 50 countries, territories, and regions.

Stainless steels: A sustainable solution for more than a century

Stainless steels are procured

Stainless steel for water supply

Stainless steel for water supply
For years, the plumbing industry has been dominated by materials such as galvanised mild steel, copper, and plastic. However stainless steel is quickly emerging as a standard construction material in various water supply applications.

Stainless steel offers a multitude of benefits, including corrosion resistance, hygienic properties, strength, long-term performance, excellent hydraulic conductivity, and the ability to withstand high pressure and temperature requirements. It has found its place in diverse applications, from desalination plants and reverse osmosis water treatment systems to water supply for high-rise buildings and domestic tapware. Stainless steel provides a safe and sustainable solution throughout the entire lifespan

Stainless steel for indoor swimming pools

Stainless steel for indoor swimming pools
Stainless steels are almost universally used around indoor and exterior pools for railings around or into the water, fixtures, furniture, grills, etc. The finishes are bright and readily cleanable for hygiene and are resistant to staining or corrosion by the chemical treatments required for the maintenance of public health.

This article discusses the unexpected problem (and the solutions) that showed up in the 1980s because of the changing design and operation of indoor heated and chlorinated swimming pools when combined with the increased use of stainless steels as structural supports in the ceilings over pools. The problem: 304/316 stainless steel

The benefits of stainless steel for brewing beer

The benefits of stainless steel for brewing beer
Australia is in a craft beer renaissance. The materials used in beer production has evolved over the years, and today, stainless steel is the material of choice and industry standard in modern brewing. Let’s look at some of the benefits.

 
Corrosion resistant

Stainless steels are excellent combatants of corrosion. This resistance to attack is due to the naturally occurring chromium-rich oxide film formed on the surface of the steel, which self-repairs in the presence of oxygen.

With the correct selection of alloys and application of good design principles and proper fabrication practices, stainless steel equipment will perform successfully. 300-series

Stainless steel reinforcement

Stainless steel reinforcement

Standing the test of time

Stainless steel reinforcement (rebar) is increasingly being specified for its excellent corrosion resistance, long-term performance and economic benefits.

There are many advantages to using stainless steel rebar:

  • Excellent durability, fire resistance and structural performance.
  • Exceptional corrosion resistance in harsh marine environments, resisting chlorides and pitting corrosion.
  • Extended service life and reduced life cycle costs.
  • Minimal maintenance costs and therefore less disruption of service for refurbishment or replacement.
  • Easy to cut and bend, good weldability.
  • Cathodic protection is not required.
  • Reduced concrete cover, minimising costs and delivering a more lightweight, higher tensile structure. Cracks are less

Common misconceptions about stainless steel

Common misconceptions about stainless steel

Everyone knows that stainless steel resists corrosion, but beyond that, an amazing range of half-truths and exaggerations have evolved - often misleading and sometimes simply wrong. This article examines some of the more common myths, explains why they are wrong, and more to the point, provides correct information.

MISCONCEPTION: There are only two types of stainless steel, 304 and 316. 

FACT: There are hundreds of stainless steels from high strength duplex 2205 supporting bridges, to furnace ducts of ferritic 3/5Cr12 and the high temperature 310, but the most common types are the austenitic 300 series.

Stainless steels were invented a little over

Structural design of stainless steel

Structural design of stainless steel

Stainless steel is used for a wide range of structural applications including:

  • Beams, columns, platforms and supports in processing plant for the water treatment, pulp and paper, nuclear, biomass, chemical, pharmaceutical, and food and beverage industries;

  • Primary beams and columns, pins, barriers, railings, cable sheathing and expansion joints in bridges;

  • Entrance structures, canopies, cladding and support systems for masonry;

  • Security barriers, blast walls, hand railing and coastal structures. 

Case studies of a range of structural applications are available at the case studies section of  www.teamstainless.org/resources/information-center-for-stainless-steel-in-construction.

This introduction to structural design in stainless steel aims to highlight differences between the

Comparisons of hot and cold formed stainless steel

Comparisons of hot and cold formed stainless steel

When comparing hot and cold formed stainless steel, the first question you would ask yourself is: are there any chemical differences between the two? ASSDA has previously published articles on the various surface finishes including the few hot and multiple cold finished processes, however this article concentrates on the differences. 

Since the 1970s, most stainless steel is produced by melting in an Electric Arc Furnace (EAF) and then the molten stainless steel is transferred to an Argon Oxygen Decarburisation (AOD) vessel or, less commonly, a Vacuum Oxygen Decarburisation (VOD) vessel. These processes control impurities such as carbon, sulphur, nitrogen, hydrogen

Seven ways to prevent tea staining of stainless steel

Seven ways to prevent tea staining of stainless steel

When used properly, stainless steel enjoys a strong and enduring reputation for visual appeal and structural integrity in a wide range of applications and environments. But, like all materials, stainless steel may become stained or discoloured over time, impairing the overall look. This brown discolouration - tea staining - has been identified in coastal applications in Australia and overseas.

In the late 1990s, the newly formed ASSDA Technical Committee researched the reasons for the brown discolouration. ASSDA’s work, in collaboration with the International Molybdenum Association, led to guidelines published in 2001 explaining the causes and remedial techniques. The work was

Coloured and patterned stainless steel

Coloured and patterned stainless steel

Think stainless steel, and most people think ‘bright, shiny and silver’. But did you know that specifying stainless steel is not limited by its silver appearance?

Coloured and textured stainless steel is an exciting material choice for designers and architects. In addition to offering a high quality and aesthetically-pleasing finish with choice of colour, stainless steel’s superior benefits when compared with plastics or anodised aluminium include resistance to heat, light, abrasion and corrosion, and overall increased durability and performance extending the service life of the application.

This article will take a look back at the development of coloured stainless steel,

AS 1528:2019 - A new edition pitched at food safety, consistency, useability and current practice

AS 1528:2019 - A new edition pitched at food safety, consistency, useability and current practice

The aim of AS 1528: Stainless steel tubes and tube fittings for food processing and hygienic applications is to standardise hygienic tube and fittings for use in dairy, food and beverage manufacturing. It has been successful in maintaining the required food safety standards in Australia and New Zealand.

AS 1528 was first issued in 2001 and developed by an ASSDA group of stakeholders in the manufacture, supply, fabrication and use of stainless steel tube and associated fittings in the food manufacturing industries.

Changing industry practice, some existing errors, internal consistencies and expansion of sizes required a revision of the standard.

Shielding gases for welding and their effects on stainless steel properties

Shielding gases for welding and their effects on stainless steel properties

Shielding gases form an integral part of all conventional welding processes. 

They serve multiple functions but are primarily there to shield the weld pool from the atmosphere and to provide a medium which can allow the flow of electricity from an electrode to a workpiece. Even processes that do not have an external gas supply such as Manual Metal Arc Welding (MMAW or MMA or SMAW) and Gasless Flux-cored Arc Welding (FCAW) all have a shielding gas which is generated by the decomposition of the flux in the presence of the welding arc.

The shielding gas can also have an

Stainless Steel and Fire Resistance

Stainless Steel and Fire Resistance

What is the fire rating of stainless steel? This is a common enquiry from ASSDA Members and the construction industry, especially with the current concerns about flammable cladding. The three major branches to this question are covered in this article.

Will stainless steel burn, and if it does, will it give off fumes or facilitate the spread of fire?  

This question is readily answered because stainless steels are steels. It is recognised that steels do not burn and only start to melt at about 1400oC. This means that stainless steels do not have a “fire rating” as

Pickling and Passivation of Stainless Steel

Pickling and Passivation of Stainless Steel

One of the most common misunderstandings in specifications for stainless steel fabrication relates to the post-fabrication treatments to restore or enhance the corrosion resistance. 

The surface treatment processes invoked vary between pickle and passivate, passivate, or sometimes simply pickle. Needless to say, whilst pickling and passivation are two distinct processes, a lack of clarity can cause some confusion between the owner and the builder/fabricator about what is expected and required. 

This article briefly outlines the factors that affect the corrosion resistance of stainless steels, what surface treatments can be used and how they affect the steel’s surface to improve corrosion

Stainless Steel: Sustainability and Life Cycle Costing

Stainless Steel: Sustainability and Life Cycle Costing

Humanity’s use of materials has progressed over the millennia from natural resources such as plants and stone to manufactured materials such as ceramics, metals and plastics with a corresponding increase in consumption of energy and materials – and increasing waste production. In parallel, the world’s consumers have grown exponentially from about 1 billion in 1800, to 7.6 billion in 2018 and a predicted 9.8 billion in 2050 – all demanding more infrastructure, facilities and resources to support the expectations of higher standards of living. This has led to an increasing realisation that green production, recycling, waste reduction and more efficient use

Ferritic Stainless Steels

Ferritic Stainless Steels

Ferritics account for approximately 25% of stainless steel use worldwide. The name arises because these alloys have similar properties to carbon steels when they are bent or cut and, unlike the well-known 304 and 316 austenitic grades, ferritics are strongly attracted to a magnet.

There is a major misconception that ferritic stainless steels are less corrosion resistant than austenitic alloys. On the contrary, for any required level of corrosion resistance (or Pitting Resistance Equivalent [PRE]), you can select a specific stainless steel from either the austenitic or ferritic family depending on the physical properties desired. Another similarity of these two

Thermal Expansion and Design of Stainless Steel Fabrications

Thermal Expansion and Design of Stainless Steel Fabrications

Either while being welded or glistening in the summer sun, the three major families of stainless steel behave differently to each other, carbon steels, aluminium and copper alloys because, as shown in the bar chart, the coefficient of thermal expansion and conductivity - and their ratio - varies.  

While alloys of copper and aluminium have equal or higher coefficients of expansion than austenitic stainless steels, it is the unique combination of high thermal expansion and low thermal conductivity that necessitates special precautions and procedures in the design and fabrication of the most commonly used 304/304L and 316/316L grades of

The Family of Duplex Stainless Steels

The Family of Duplex Stainless Steels

The use of duplex stainless steels has grown globally based on their strength, corrosion resistance and a range of properties that improve equipment life.

The name duplex is sometimes used to describe Alloy 2205 (UNS S31803 or UNS S32205), however duplex is a family of alloys ranging from lean duplex and standard duplex to super duplex stainless steel.

HISTORY

Duplex stainless steel was first developed in France and Sweden in the 1930’s, with the early grades becoming a forerunner for AISI 329, but a lack of control over the chemistry and lack of adequate welding products and techniques impeded development

K-TIG: A Quantum Leap for Welding

K-TIG: A Quantum Leap for Welding

Innovation Design Set to Transform the Industry

For the past six decades, the welding process has only been tweaked and modified, but one Adelaide company has developed a new process set to save millions of dollars and forever change the way welds are performed.

DEVELOPMENT

In 2000, Dr Laurie Jarvis and his associates at CSIRO Adelaide studied the effect of surface tension within an active weld. It was noted that under certain conditions, namely narrow gaps and increased process conditions, that far greater speeds could be obtained when welding clean materials.

The team developed a brand new process involving a

Page 1 of 4